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A link is established between Bohr’s inequality for classes of analytic functions and the hyperbolic metric. The
classes considered consist of analytic functions mapping the unit disk respectively into the right half-plane, the
slit region, and to the exterior of the unit disk.
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1 Introduction

Bohr’s inequality states that if

f(z) =
∞∑

n=0

anzn

is analytic in the unit disk U and |f(z)| < 1 for all z ∈ U, then

∞∑

n=0

|anzn | ≤ 1 (1.1)

for all z ∈ U with |z| ≤ 1/3. This inequality was discovered by Bohr [11] in 1914. Bohr actually obtained
the inequality for |z| ≤ 1/6. Wiener, Riesz and Schur, independently established the inequality for |z| ≤ 1/3
and showed that the bound 1/3 is sharp [15], [20], [21]. Other proofs were also given in [16]–[18]. Boas and
Khavinson [10], and more recently Aizenberg [4]–[6] extended the inequality to several complex variables.

Bohr’s inequality drew the attention of operator algebraists after Dixon [12] showed a connection between
the inequality and the characterization of Banach algebras that satisfy Von Neumann’s inequality. Specifically,
by using Bohr’s inequality, Dixon constructed an example of a Banach algebra that satisfies Von Neumann’s
inequality but is not isomorphic to the algebra of bounded operators on a Hilbert space. Paulsen and Singh [16]
extended Bohr’s inequality to Banach algebras.

A class of analytic (or harmonic) functions in the unit disk U is said to satisfy Bohr’s phenomenon if an
inequality of type (1.1) holds uniformly in |z| < ρ0 , for some 0 < ρ0 ≤ 1, and for all functions in the class.

This article considers the class of functions subordinated to a given analytic function. For two analytic func-
tions f and g in the unit disk U , the function g is subordinate to f if there exists a Schwarz function ϕ, analytic
in U with ϕ(0) = 0 and |ϕ(z)| < 1, satisfying g = f ◦ϕ. In particular, when f is univalent, then g is subordinate
to f provided g(U) ⊂ f(U) and g(0) = f(0) ([13, p. 190], [19, p. 35]). Consequently, when g is subordinate to
f, then |g′(0)| ≤ |f ′(0)|. For additional details on subordination classes, see for example [13] or [19].
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Let S(f) denote the class of functions g subordinate to a fixed function f and f(U) = Ω. The class S(f) is
said to satisfy a Bohr’s phenomenon if for any g(z) =

∑∞
n=0 bnzn ∈ S(f) and f(z) =

∑∞
n=0 anzn , there is a

ρ0 , 0 < ρ0 ≤ 1, so that

∞∑

n=1

|bnzn | ≤ d(f(0), ∂Ω) (1.2)

for |z| < ρ0 . Here d(f(0), ∂Ω) denotes the Euclidean distance between f(0) and the boundary of a domain Ω.
Obviously, when Ω = U, d(f(0), ∂Ω) = 1 − |f(0)| and in this case (1.2) reduces to (1.1).

It is known that S(f) has a Bohr’s phenomenon when f is univalent. Abu-Muhanna [1] recently showed that
every g(z) =

∑∞
n=0 bnzn ∈ S(f) satisfies

∞∑

n=1

|bnzn | ≤ d(f(0), ∂Ω) (1.3)

for |z| ≤ ρ0 = 3 − 2
√

2 ∼= 0.171 57. The radius ρ0 is sharp for the Koebe function f(z) = z/(1 − z)2 . In
particular, when f is convex, it was shown in [6] that (1.3) remains valid for ρ0 = 1/3, a result which includes
(1.1) when Ω = U . In a recent paper [2], we had investigated Bohr’s inequality for functions mapping the unit
disk into the exterior of a compact convex set.

This article studies Bohr’s phenomenon to three classes of analytic functions mapping the unit disk respectively
into the right half-plane, the slit region, and to the exterior of the unit disk. It is shown that Bohr’s phenomenon
is carried over to the hyperbolic metric. In other words, the hyperbolic metric can be used to describe the phe-
nomenon. This is not surprising if one takes into account the invariant nature of the metric. Results of Section 2
are proved by using the properties of the hyperbolic metric and sharpened by introducing the hyperbolic metric
into the conclusions.

Let us recall [8], [9] that the hyperbolic metric for U is defined by

λU (z)|dz| =
2|dz|

1 − |z|2 , (1.4)

the hyperbolic length by

LU (γ) =
∫

γ

λU (z)|dz|,

and the hyperbolic distance by

dU (z, w) = inf
γ

LU (γ),

over all smooth curves γ joining z to w in U . The following four results from [8], [9] will be required.

Theorem 1.1 The hyperbolic distance in U is given by

dU (z, w) = log
1 +

∣∣∣ z−w
1−zw

∣∣∣

1 −
∣∣∣ z−w
1−zw

∣∣∣
.

Hence dU (z, 0) = log 1+|z |
1−|z | → ∞, as |z| → 1. This shows that the disk together with the hyperbolic metric

(the Poincare space) is a hyperbolic plane.

Theorem 1.2 (Schwarz-Pick) Let f : U → U be analytic. Then

dU (f(z), f(w)) ≤ dU (z, w).

Equality is possible only when f(z) = eiθ z+a
1+az , a ∈ U , θ ∈ R.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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For any simply connected domain Ω, and f : U → Ω the corresponding conformal map, define the hyperbolic
metric of Ω by

λΩ(w) =
λU (f−1(w))
|f ′(f−1(w))| . (1.5)

The metric λΩ is independent of the choice of the conformal map f used.

Theorem 1.3 Let g : U → Ω be analytic. Then

dΩ(g(z), g(w)) ≤ dU (z, w).

Equality is possible only when g is conformal onto Ω. In particular, dΩ(g(z), g(0)) ≤ log 1+|z |
1−|z | .

The following estimates on the hyperbolic metric λΩ in terms of the Euclidean distance will be of interest.

Theorem 1.4 Let Ω be a simply connected proper domain, and f : U → Ω be conformal. Then

1
2d(f(z), ∂Ω)

≤ λΩ(f(z)) ≤ 2
d(f(z), ∂Ω)

.

Equality holds on the left if and only if Ω is a slit-plane. If Ω is convex, then

1
d(f(z), ∂Ω)

≤ λΩ(f(z)) ≤ 2
d(f(z), ∂Ω)

.

Equality holds on the left if and only if Ω is a half-plane.

2 Main results

This section contains the main results on Bohr’s phenomenon which have been improved by incorporating the
hyperbolic metric.

2.1 Half-planes and convex domains

Let H = {z = x + iy : Re z > 0} be the right half-plane. It is shown [9, Example 7.2, p. 29] that

λH (z)|dz| =
|dz|
x

.

The following result and its corollary relates to functions mapping the disk respectively into H or a convex
domain. By incorporating the hyperbolic metric, they improve the results of Aizenberg [7] in the sense that the
reciprocal of the hyperbolic metric for a convex domain (cf. Theorem 1.4) yields a sharper estimate than the
Euclidean distance.

Theorem 2.1 Let g(z) =
∑∞

n=0 anzn ∈ H for all z ∈ U. Then

∞∑

n=1

|anzn | ≤ 1
λH (a0)

= d(a0 , ∂H)

when |z| ≤ ρ = 1/3. This bound is sharp.

P r o o f. Let F (z) = (Re a0)((1 + z)/(1 − z)). Then h(z) = g(z) − i Im a0 =
∑∞

n=1 anzn + Re a0 is
subordinate to F . Since F is conformal, it follows that

dH (h(z),Re a0) ≤ dH (F (z),Re a0) = dU (z, 0) = log
1 + |z|
1 − |z| .

Let w(z) =
∑∞

n=1 |an |zn + Re a0 . Then by Herglotz formula [16], we deduce that w(|z|) ≤ F (|z|). Hence

dH (w(|z|),Re a0) = log
w(|z|)
Re a0

≤ dH (F (|z|),Re a0) = log
1 + |z|
1 − |z| .

www.mn-journal.com c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Consequently, w(|z|) ≤ (Re a0)((1 + |z|)/(1 − |z|)).
If |z| ≤ 1/3, then w(|z|) ≤ 2Re a0 , and thus

w(|z|) − Re a0 ≤ Re a0 =
1

λH (a0)
= d(a0 , ∂H).

Corollary 2.2 Let g(z) =
∑∞

n=0 anzn ∈ Ω, where Ω is a convex domain. Then

∞∑

n=1

|anzn | ≤ 1
λΩ(a0)

≤ d(a0 , ∂Ω),

for |z| ≤ 1/3. This result is sharp.

P r o o f. Let ζ ∈ ∂Ω be nearest to a0 . Further let Tζ be the tangent line at ζ, and Hζ the half-plane containing
Ω. Then g(z) ∈ Hζ . Choose t real so that (Hζ − ζ) eit = H, the right half-plane. Let Ω1 = (Ω − ζ) eit . Hence
(g(z) − ζ) eit ∈ Ω1 ⊂ H and (a0 − ζ) eit = | a0 − ζ|.

Let f(z) =
∑∞

n=0 bnzn be the conformal map from U onto Ω1 , with f(0) = |a0−ζ| and b1 > 0. By Lemma 4
in [1], |an | ≤ |b1 | for all n > 1. Consequently for |z| ≤ 1/3,

∞∑

n=1

|anzn | ≤ b1

2
=

1
λΩ1 (f(0))

=
1

λΩ(a0)
.

As f(z) is subordinate to f(0)((1 + z)/(1 − z)), Herglotz formula yields |b1 | ≤ 2f(0). Hence

∞∑

n=1

|anzn | ≤ 1
λΩ(a0)

≤ f(0) = |a0 − ζ|

=
1

λH ((a0 − ζ) eit)
= d

(
(a0 − ζ) eit , ∂H

)
= d(a0 , ∂Ω).

2.2 Slit map

Let P = {z : |arg z| < π}. From (1.5), it is shown in [9, Example 7.7, p. 31] that

λP (z)|dz| =
|dz|

2|√z|Re
√

z
=

|dz|
2|z| cos θ/2

≥ |dz|
2|z| ,

(
z = reiθ

)
.

This theorem is about functions mapping the disk into P .

Theorem 2.3 If h(z) =
∑∞

n=0 anzn ∈ P for all z ∈ U , then

∞∑

n=1

|an | |z|n ≤ 1
2λP (|a0 |)

= d(|a0 |, ∂P )

for |z| ≤ ρ =
√

2−1√
2+1

= 0.171 57. This result is sharp.

P r o o f. Let

F (z) = |a0 |
(

1 + z

1 − z

)2

.

Then F (z) ∈ P and

dP (F (z), F (0)) = dU (z, 0) = log
1 + |z|
1 − |z| .
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Now

dP (F (|z|), F (0)) =

F (|z |)∫

F (0)

λP (z)|dz| =

F (|z |)∫

F (0)

1
2|z| |dz| =

1
2

log
F (|z|)
F (0)

.

Thus

F (|z|)
F (0)

=
(

1 + |z|
1 − |z|

)2

.

When ρ ≤
√

2−1√
2+1

= 0.171 57, F (|z|) − F (0) ≤ F (0) = 1
2λP (F (0)) = d(F (0), ∂P ).

De Brange’s Theorem [14] implies that
∑∞

n=0 |anzn | ≤ F (|z|), which yields the desired result.

Corollary 2.4 Let h(z) =
∑∞

n=0 anzn map U conformally into a simply connected domain Ω. Then

∞∑

n=1

|an | |z|n ≤ 1
2λΩ(|a0 |)

≤ d(|a0 |, ∂Ω) ≤ 2
λΩ(|a0)|

when |z| ≤ ρ =
√

2−1√
2+1

= 0.171 57.

P r o o f. Let ζ ∈ ∂Ω be closest to a0 and let eit(Ω − ζ) = Ω1 , where t is chosen so that eit(a0 − ζ) > 0 and
the origin on ∂Ω1 is closest to b0 = eit(a0 − ζ). Let

g(z) = eit(h(z) − ζ) =
∞∑

n=0

bnzn =
∞∑

n=0

eit(an − ζ)zn

and

f(z) = b0

(
1 + z

1 − z

)2

=
∞∑

n=0

Bnzn = b0

(
1 + 4

∞∑

n=1

nzn

)
.

From de Brange’s Theorem [14], it follows that

|bn | ≤ n |b1 | =
|b1 |

4 |b0 |
(4 |b0 |n).

Thus Theorem 2.3, Theorem 1.4, along with the fact that λΩ1 (|b0 |) = λΩ(|a0 |) [9, p. 36], yield

∞∑

n=1

|bnzn | ≤ |b1 |
4 |b0 |

∞∑

n=1

|Bnzn | ≤ |b1 |
4 |b0 |

1
2λP (|b0 |)

=
|b1 |
4

=
1

2λΩ1 (|b0 |)
=

1
2λΩ(|a0 |)

≤ d(|a0 |, ∂Ω).

2.3 Exterior of the unit disk

Let U∗ = {z : |z| > 1}. From (1.5), it is easily deduced that

λU ∗(z)|dz| =
|dz|

|z| log |z| .

Theorem 2.5 Let a0 > 1, and f(z) =
∑∞

n=0 anzn ∈ U∗ for all z ∈ U . If |z| ≤ 1/3, then

(a) log
(∑∞

n = 0 |an zn |
a0

)
≤ 1

λH (log a0 ) = d(log a0 , ∂H),

(b)
∑∞

n=1 |anzn | ≤ 2
λU ∗ (a0 ) , provided a0 ≤ 2.

www.mn-journal.com c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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P r o o f. Let F (z) = exp
[

(log a0 )(1+z )
(1−z )

]
be a universal covering of U∗. Note that

g(z) =
∞∑

n=0

|an | zn

is also in U∗. Then

dU ∗(g(|z|), a0) = log
[
log g(|z|)

log a0

]
≤ dU ∗(F (|z|), a0)

= log
[
log F (|z|)

log a0

]
= log

1 + |z|
1 − |z| .

Thus

log g(|z|) ≤ log F (|z|) = log a
1 + |z |
1−|z |
0 .

When |z| ≤ 1/3,

log g(|z|) − log a0 ≤ log F (|z|) − log a0 ≤ log a0

=
1

λH (log a0)
= d(log a0 , ∂H) =

1
|a0 |λU ∗(a0)

.

In addition,

F (|z|) − a0 ≤ a0(a0 − 1)

whenever |z| ≤ 1/3. Since g(|z|) ≤ F (|z|), the condition a0 ≤ 2 yields

∞∑

n=1

|anzn | ≤ 2
λU ∗(a0)

.
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[7] L. Aizenberg, Generalization of results about the Bohr radius for power series, Studia Math. 180(2), 161–168 (2007).
[8] J. W. Anderson, Hyperbolic Geometry, Springer Undergraduate Mathematics Series second ed., (Springer, London,

2005).
[9] A. F. Beardon and D. Minda, The Hyperbolic Metric and Geometric Function Theory, Proceedings of the International

Workshop on Quasiconformal Mappings and their Applications (IWQCMA05).
[10] H. P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Am. Math. Soc. 125(10), 2975–

2979 (1997).

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 286, No. 11–12 (2013) / www.mn-journal.com 1065

[11] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. (2) 13, 1–5 (1914).
[12] P. G. Dixon, Banach algebras satisfying the non-unital von Neumann inequality, Bull. Lond. Math. Soc. 27(4), 359–362

(1995).
[13] P. L. Duren, Univalent Functions (Springer, New York, 1983).
[14] S. Gong, Bieberbach Conjecture, Studies in advanced mathematics (AMS, 1991).
[15] V. I. Paulsen, G. Popescu and D. Singh, On Bohr’s inequality, Proc. Lond. Math. Soc. (3) 85(2), 493–512 (2002).
[16] V. I. Paulsen and D. Singh, Bohr’s inequality for uniform algebras, Proc. Amer. Math. Soc. 132(12), 3577–3579 (2004),

(electronic).
[17] V. I. Paulsen and D. Singh, Extensions of Bohr’s inequality, Bull. Lond. Math. Soc. 38(6), 991–999 (2006).
[18] V. I. Paulsen and D. Singh, A Simple Proof of Bohr’s Inequality, Conference Proceedings, to appear.
[19] C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht (Göttingen, 1975).
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